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Abstract. 

Adaptation to an increasingly dry regional climate requires spatially explicit information about current and future risks. 15 
Existing drought risk studies often rely on expert-weighted composite indicators, while empirical evidence on impact-relevant 

factors is still scarce. The aim of this study is to investigate to what extent hazard and vulnerability indicators can explain 

observed agricultural drought impacts via data-driven methods. We focus on the German federal state of Brandenburg, 2013-

2022, including several consecutive drought years. As impact indicators we use thermal-spectral anomalies (LST/NDVI) on 

field level, and empirical yield gaps from reported statistics on county level. Empirical associations to the impact indicators 20 
on both spatial levels are compared. Non-linear models explain up to about 60% variance in the yield gap data, with lumped 

models for all crops being more stable than models for individual crops, and models for the drought years performing better 

than for the pre-drought years. Meteorological drought in June and soil quality are selected as strongest impact-relevant factors. 

Rye is found less vulnerable than wheat, despite growing on poorer soils. LST/NDVI only weakly relates to our empirical 

yield gaps. We recommend comparing different impact indicators on multiple scales to proceed with the development of 25 
empirically grounded risk maps. 

 

 

 

 30 

https://doi.org/10.5194/egusphere-2024-1149
Preprint. Discussion started: 23 April 2024
c© Author(s) 2024. CC BY 4.0 License.



2 
 

1 Introduction 

Agricultural drought risk mapping is essential for spatial prioritization of adaptation actions and measures, and particularly to 

raise awareness of stakeholders throughout the social-ecological system (Mishra and Singh, 2011; Blauhut, 2020; Kim et al., 

2021). In the light of climate change, droughts are expected to occur in higher frequency and unprecedented magnitudes, which 

poses a major challenge for risk management (Hanel et al., 2018; Hari et al., 2020; Satoh et al., 2022; Kreibich et al., 2022). 35 
Risk in this context can be conceptualized as potential for negative impacts, assembled from the components hazard, exposure, 

and vulnerability – while definitions of terms have shifted over the years, the recent guideline by the Intergovernmental Panel 

on Climate Change (IPCC) is very clear on that matter (Reisinger et al., 2020). A sound understanding of hazard thresholds 

and vulnerability conditions associated with impacts under droughts (hereinafter “impact-relevant factors”) is thus urgently 

needed to provide reliable risk maps and move towards impact-based forecasting (Sutanto et al., 2019). However, many 40 
drought risk maps are still being produced by more or less arbitrary weighting of indicators to a composite score (Kim et al., 

2015; Dabanli, 2018; Kim et al., 2021; Khoshnazar, 2023), sometimes based on expert opinion (Frischen et al., 2020; Abdullah 

et al., 2021; Stephan et al., 2023), or by process-based models for individual agricultural crops (Söder et al., 2022). A review 

of international examples found that drought studies in particular do often neither define their target of investigation in 

sufficient detail, nor include any sort of validation, thereby making the results difficult to interpret and use (Hagenlocher et al., 45 
2019). Such aggregated indicators could harm more than they help by masking important differences between areas (Jhan et 

al., 2020). For Brandenburg, our study region, Ihinegbu and Ogunwumi (2022) produced a drought event map based on 

weighting of the normalized difference vegetation index (NDVI), land surface temperature (LST), and rainfall, without 

considering vulnerability or impacts. We suggest that drought risk mapping should be more closely related to investigations 

of actual hazard-impact relationships. 50 
 

Droughts are natural hazards with a relatively slow-onset character, although there is recently more scientific attention towards 

flash droughts (Alencar and Paton, 2022). Distinguished are purely meteorological droughts, soil moisture droughts, 

hydrological low flow in rivers, as well as socio-economic droughts that impose consequences on the broader population and 

might lead to water conflicts (Wilhite and Glantz, 1985). For agriculture, the direct biophysical drought impacts arguably start 55 
once water availability restricts plant growth. Depending on the drought intensity, duration, and timing within the plant 

phenological stage, crop health is affected, which translates into yield levels, product quality and ultimately prices (Santini et 

al., 2022). Historically, droughts are associated with famine and high death tolls (Mishra et al., 2019; Contreras, 2019). With 

modern disaster response, the impacts usually stay on the economic level, but also monetary loss can have severe consequences 

for individuals, businesses, and entire regions, that are to be anticipated and managed proactively (Erfurt et al., 2019; 60 
Krishnamurthy et al., 2022). While there are mechanisms to partially compensate losses due to extreme events (European 

Commission, 2023), a notable residual business risk remains with the farms – potentially leading to stress and anxiety 

experienced by farmers (Austin et al., 2018; Abunyewah et al., 2024). Indirect effects are then propagated along the value 
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chain and within the affected region. More than 100 billion euro have been attributed to drought events between 1986 and 

2016 in the European Union (Blauhut et al., 2016).  In the German federal state of Brandenburg, our study region, the local 65 
government spent 72 million euro of compensations to farmers for drought-related losses in 2018 alone, accounting for about 

45% of the actual claims of that year (MLUK, 2019). This, however, was only the beginning of a prolonged multi-year drought 

(Boeing et al., 2022). As an area that was historically water-rich, Brandenburg now needs to prepare for a dryer future 

(Kahlenborn et al., 2021; MLUK, 2023), making it an interesting case for an empirical study.  

 70 
Methods for empirically investigating impact-relevant factors for natural hazards range from simple regression to state-of-the-

art data-mining algorithms. Investigated impacts include for example damage to buildings from river floods (Merz et al., 2013), 

debris flows (Jakob et al., 2012), or compound events (Brill et al., 2020), as well as casualties from floods (Tellman et al., 

2020) and heat (Şalap-Ayça and Goto, 2023), or the occurrence of wildfires (Kondylatos et al., 2022). There have been similar 

attempts to uncover impact-relevant factors from text reports of past droughts (Stahl et al., 2016; Blauhut et al., 2016; de Brito 75 
et al., 2020; Sodoge et al., 2023; Stephan et al. 2023b), and from yield anomalies for selected crops (Sutanto et al., 2019; Peichl 

et al., 2021; Tanguy et al., 2023). Despite these recent efforts, empirical evidence on regional impact-relevant factors and non-

linearities of actual observed drought impacts is still rather scarce (Bachmair et al., 2016; Sutanto et al., 2019; Peichl et al., 

2021; Tanguy et al., 2023). A key bottleneck of such data-driven studies is the availability of impact data. 

 80 
One potential solution to solve the data availability issue is the use of remote sensing data products, from which indicators of 

crop health can be derived. The ratio between LST and NDVI is a well-established observable indicator for that purpose 

(McVicar and Bierwirth, 2001; Karnieli et al., 2010; Crocetti et al., 2020). Mid growing season is generally regarded as the 

most decisive time of observation (Ghazaryan et al., 2020). Reinermann et al. (2019) used remote-sensing time series from 

2000 to 2018 and detected negative vegetation anomalies in Germany during summer months, particularly in the drought year 85 
2018. The correlation strength of drought indicators to yields was found to increase over time (Lüttger and Feike, 2018). 

However, most data-driven studies using earth observation merely model the occurrence of drought or treat anomalies of 

spectral indicators as “observed impact” without proper comparison to yields (Houmma et al., 2022). 

 

Based on these identified gaps, the aim of this study is twofold: (1) we investigate the recent drought years in Brandenburg by 90 
combining indicators on hazard, vulnerability, and impacts from multiple data sources, and (2) we derive empirical 

relationships of hazard and vulnerability indicators to the different impact indicators by data-driven methods. Additionally, an 

interactive web map was developed to assist on the exploration of the components of regional drought risk. The findings 

provide new insights on the complexity of the impact-hazard-vulnerability relationship of agricultural droughts for our study 

region in Brandenburg, as well as on limitations of currently available datasets. This has implications for modelling and 95 
monitoring. 
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2 Material & Methods 

2.1 Approach & Study Area 

To achieve our two objectives, we select a set of indicators based on a literature analysis, including impact indicators on two 

different levels: field and county level. Spatiotemporal patterns are investigated by visual inspection. We then conduct data-100 
driven analyses to identify hazard and vulnerability indicators empirically associated to the impact indicators on both levels 

(Fig. 1). These data-driven analyses consist of correlation checks, machine learning regression and model inspection 

techniques. In addition to this paper, we provide an interactive web-based visualization tool to foster the exploration of data 

beyond the printed figures. 

 105 

 
Figure 1. Workflow of the presented study 

 

As study region we choose the German federal state of Brandenburg, which has a relevant agricultural sector that has been 

affected by drought in recent years, and where reported yields as well as high spatial resolution data on grown crops are 110 
available. Brandenburg is characterized by flat topography, sandy soils and lakes stemming from the latest ice age, as well as 
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former peatland areas that have been drained over centuries for the purpose of obtaining arable land (LBGR, 2010). The climate 

is continental and comparably dry for German standards, with averaged precipitation around 600 mm/a, and evapotranspiration 

around 500 mm/a, including smaller subregions with negative water balances (Germer et al., 2011). Regional climate 

projections indicate a further reduction in precipitation during the crop growing season, i.e. harsher conditions for agriculture 115 
(Kahlenborn et al., 2021; MLUK, 2023). Soil water is generally expected to decrease in the region (Holsten et al., 2009). 

Agriculture in Brandenburg is primarily rainfed, though, and current priorities of the regional water management suggest that 

the uptake of large-scale irrigation will not be a realistic option in the near future (MLUK, 2023). Despite this setting, the 

agricultural sector is very important for the region and its population in the 18 counties (in German: Landkreise, correspond 

to NUTS-3 regions), with about 1 million ha, one third of the state, used for arable farming (MLUK, 2023). The agricultural 120 
sector of Brandenburg has also been identified as highly vulnerable to drought in European- scale studies (de Stefano et al., 

2015; Blauhut et al., 2016). 

 

2.2 Exposure & Vulnerability Indicators 

Spatially explicit information about exposure, i.e. cropped agricultural land, is derived from the Integrated Administration and 125 
Control System (IACS), that provides the field-level data on crops for farms which have applied for annual payments within 

the EU’s Common Agricultural Policy (CAP) (Leonhardt et al., 2023). These shapes provide the basis of our field-level 

analysis. We selected 12 of the most important crop types in Brandenburg in terms of area of production, for which matching 

information in the yield reports and average values per LBG are available (Table A1). In some cases we only used the winter 

variety, in other cases we had to merge summer and winter varieties to match the yield reports (Table A2). The 12 crops used 130 
in this study are: winter wheat, rye, triticale, oat, winter barley, winter canola, grain maize, sunflower, potatoes, lupines, peas, 

and sugar beet. The total cropped area covered by our 12 selected crop types is fluctuating in the investigated time period 

(2013-2022) between about 638.000 to 686.000 ha, with no clear trend. The largest unconsidered fraction is silage maize, 

which is mostly used as fodder and thus not consistently covered in the reported statistics. Rye is among the most commonly 

found crops in the region, and regarded as reliable source of income on sandy soils even with little precipitation (LBV, 2024). 135 
Wheat is considered to be more demanding but also to realize higher prices. Cultivation of potatoes and sugar beet has been 

drastically reduced over the last decades, partially owing to the increasingly dry climate (LBV, 2024). Farm level product 

prices were purchased from the company Agrarmarkt Informations-Gesellschaft (AMI) (cf. LELF, 2021 for publicly available 

data until 2020). 

 140 
Vulnerability, a characteristic of the exposure, conceptually provides the link between hazard and impacts. Vulnerability 

indicators attempt to capture the relevant characteristics. We compiled a list of environmental and socio-economic indicators 

and their assumed direction of influence on agricultural drought vulnerability (cf. Walz et al., 2018; Meza et al., 2019; Frischen 

et al., 2020; Zhou et al., 2022; Stephan et al., 2023). A gridded estimate of agricultural soil quality (in German: Ackerzahl, 
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AZL) is available in 5 m resolution (Schmitz and Müller, 2020). Based on the AZL, 5 different agricultural production areas 145 
(in German: Landbaugebiete, LBG), are classified, for which average yields for the most important crops are published (LELF, 

2016). As a specific water-related indicator we include the plant-available water capacity (in German: nutzbare Feldkapazität, 

NFK) (BGR, 2015). To capture potential water accumulation in the landscape, we further derived the topographic wetness 

index (TWI) from a digital elevation model (BKG, 2017). We extracted mean values of AZL, NFK, and TWI per agricultural 

field for the available point in time, assuming that they do not change over time. Other indicators, in particular the socio-150 
economic datasets, were only available per county for Brandenburg. This restricted their use to simple correlation analysis 

with impact indicators on the same spatial level. Large parts of Brandenburg are classified as “disadvantaged area” due to 

rather poor soils – the exception here being the northeastern counties Uckermark and Märkisch-Oderland. These two counties 

also exhibit the highest scores for secured succession (along with Potsdam), despite long-known problems with general 

unemployment in the Uckermark (10.7% in the year 2022). Smaller strips and patches of high quality LBG-1 soils are found 155 
in the West (Fig. 2). The spatial distribution of crop types partially reflects these patterns, e.g. winter wheat is typically grown 

on high-quality soils, making it the dominant crop type in the abovementioned areas, while rye is most common throughout 

the rest of Brandenburg on poorer, sandy soils. 

 

 160 
Figure 2. Spatial distribution of agricultural soil quality (LBG). Distribution of winter wheat and rye in the year 2022. 
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2.3 Hazard indicators: SPEI and SMI 

The Standardized Precipitation Evaporation Index (SPEI) captures both precipitation and potential evaporation and has evolved 

as one of the most commonly used meteorological drought indicators in recent years (Vicente-Serrano et al. 2010, Rossi et al. 

2023, Tanguy et al. 2023). Monthly values of SPEI-1 (one-month accumulation SPEI) were provided by Zhang et al. (2024) 165 
on 10 km grid resolution from 2013 to 2022. As the harvest of main crops in the region typically starts in July, we used data 

for the months March to July. In addition to the monthly SPEI, a metric of growing season drought magnitude was computed 

as the sum of SPEI-1 < -0.5 over the period between March and July (SPEI-Magnitude). Regarding soil moisture droughts, the 

model-based German drought monitor developed at the Helmholtz Centre for Environmental Research (UFZ) is the most 

established regional product (Samaniego et al., 2013; Zink et al., 2016; Boeing et al., 2022) and has already been used for 170 
similar purpose (Peichl et al., 2021). We use the monthly soil moisture index (SMI) and aggregated soil drought magnitude 

(SMI-Magnitude) in the top soil (25 cm), again from March to July. To add some information on slower long-term drought 

processes, we further include the annual drought magnitude for the total soil (up to 1.8 m depth), which is temporally 

aggregated from April to October (SMI-Total). Negative SPEI values indicate meteorological drought while positive SMI 

values indicate soil drought.  175 

2.4 Impact indicators: crop health observations and empirical yield gaps 

As an indicator of crop health, the ratio of LST and NDVI between May and June, i.e. roughly mid growing season, of each 

year (2013-2022) was obtained from Landsat-8 satellite imagery, using all images of the T1_L2 collection. Pre-processing and 

cloud-masking were conducted within the Google Earth Engine (Gorelik et al., 2017). The temporal aggregation of the satellite 

data is necessarily a compromise: a comparison between years gets more precise when the interval is shorter, but to smooth 180 
out potential variations in overpass and cloud cover, as well as disturbances on individual pixels, mean values across several 

weeks are generally more trusted (Ghazaryan et al., 2020). Images were downloaded in 30 m spatial resolution and then 

aggregated on individual fields. A small fraction of fields had to be discarded due to missing data, e.g. because of cloud cover, 

and we continued the statistical analysis with the remaining ones. As different crop types exhibit characteristic spectra, we 

further computed the anomalies of LST/NDVI over the entire observation period stratified by crop type. By doing so, the 185 
resulting anomalies (LST/NDVI-anom.) are comparable among different crops. 

 

We further calculated empirical yield gaps per county for 12 crops for the last 10 years (2013-2022), by subtracting actual 

reported yields (total production in tonnes) by the regional statistical authority (Amt für Statistik Berlin-Brandenburg, 2022; 

Alencar, 2022) from an estimate of expected yields under non-drought conditions. We refer to expected yields as the product 190 
of cropped area (per crop type in a given year) and the respective 5-year average yield (tonnes per hectare) per LBG from the 

time 2010-2014. The expected yields are computed on field level and then aggregated on the level of counties, to be comparable 

to the reported yield data. We refer to relative gap as the fraction of this empirical yield gap and the expected yield. A relative 
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gap value of 1 thus implies that all yield was lost, while a value of -1 implies that double the expected amount was reported, 

and a value of 0 indicates a perfect match between expected and reported numbers. To correct for differences in the total area 195 
reported in IACS as compared to the yield reports, we added the difference in area per crop, multiplied with the average yield 

per hectare of that crop within the respective county as derived from the data. Some minor assumptions had to be made to 

merge crop types reported in IACS with the reports like neglecting spelt in the statistics for wheat (details in Appendix A). 

Multiplication of the empirical yield gaps and prices of the respective year results in a total estimate of monetary loss in euro. 

As not all of the 12 considered crops are grown in all regions in every year, the total monetary loss estimate can be based on 200 
partially different crops per region. We assume this reflects the real agroeconomic situation in each region. 

 

For a plausibility check, we compared the resulting empirical yield gaps and loss estimates to regional newspaper reports. For 

individual crops (rye, wheat, maize, barley) we were able to also calculate the potential production (PP) and water-limited 

production (WLP) by the process model WOFOST on a 2 km grid resolution (Jänicke et al., 2017; de Wit et al., 2019). Crop 205 
growth is modelled from irradiation, temperature, CO2 concentration, plant characteristics, seeding date, and availability of 

water. The physically modelled potential production from WOFOST matches very well with the expected yields derived by 

our empirical approach for soil quality range LBG-2 in the case of wheat and barley, and LGB-1 in the case of rye (Fig. 3). 

We are thus confident that our choice of reference period (2010-2014) is reasonable and can be used to produce estimates in a 

realistic range. Only for maize the modelled potential production is higher than the average values for Brandenburg suggest 210 
on any soil type. For further comparison we use the newspaper reported impact score by (Sodoge et al., 2023), for the category 

“agriculture”. All data used is summarised in Table 1. 

 

 

 215 
Figure 3. Comparison on field level (a) wheat (b) rye (c) barley (d) maize. The original resolution of the crop model is 2 km 

 

 

 

 220 
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Table 1. Indicators and data sources 
Category Abbreviation Indicator Description Spatial Res. Data source and references 
Hazard SPEI (monthly) 

SPEI Magnitude 
Standardized Precipitation-Evaporation Index,  
Sum of SPEI < -0.5, March–July 

10 km Zhang et al. (2024) 

SMI (monthly) 
SMI Magnitude 
SMI Total 

Soil Moisture Index, top soil (25 cm) 
Top soil, March–July 
Total soil (max. 1.8 m), April–October 

4 km Boeing et al. (2022), UFZ Drought Monitor /  
Helmholtz Centre for Environmental Research  
https://www.ufz.de/index.php?en=37937 

Exposure - 
 

Agricultural land, on which one of the 12 
selected crops is reported in the IACS dataset 

Fields 
(vector) 

Integrated Administration and Control System (IACS) 
MLUK (2022c), Leonhardt et al. (2023) 

Impact LST/NDVI 
 
LST/NDVI-anom. 

Land Surface Temperature / Normalized 
Difference Vegetation Index. Mean of May–June 
Anomalies per crop 

30 m Landsat-8, collection: Landsat/LC08/C02/T1_L2 
Courtesy of the U.S. Geological Survey (USGS) 
accessed via Google Earth Engine 

Empirical yield gap 
Relative yield gap 

Expected - Reported 
(Expected - Reported) / Expected 
where Expected is based on 5-year average 
hectare yields per LBG and the annual area in ha 

County 5-year average hectare yield per LBG: LELF (2016) 
Reported: Amt für Statistik Berlin-Brandenburg (2022)  
Compiled by Alencar (2022) 
https://github.com/pedroalencar1/CropYield_BBr 

Loss estimate Sum (empirical yield gap * farm level price), 
for all crops reported in a county per year 

County Farm level prices: AMI, cf. LELF (2021) for publicly 
available data until 2020 

PP 
WLP 
Modelled Gap 

Potential production from a crop model 
Water limited production 
PP-WLP 

2 km WOFOST: de Wit et al. (2019) 
Forcing: Jänicke et al., (2017) 

Newspaper reported- 
impacts 

Number of newspaper articles reporting 
agricultural drought impacts (text-mining based) 

County Sodoge et al. (2023) 

Environmental 
Vulnerability 

AZL 
LBG 

Agricultural soil quality (“Ackerzahl”), 
5-class ordinal range (“Landbaugebiet”) 

5 m Schmitz & Müller (2020) 
LELF (2021) 

TWI Topographic wetness index 200 m BKG (2017) 
NFK Plant available water (“nutzbare Feldkapazität”) 250 m BGR (2015a) 
- Soil depth County BGR (2015b) 
- Soil water erosion County BGR (2014a) 
- Soil wind erosion County BGR (2014b) 
- Water exchange frequency County BGR (2015c) 
- Forest ratio County Statistische Ämter des Bundes und der Länder (2020a) 
- Farmland ratio County Statistische Ämter des Bundes und der Länder (2020a) 
- Protected area County LfU (2020) 
- Disadvantaged area County MLUK (2022b) 
- Livestock health County Statistische Ämter des Bundes und der Länder (2020b) 

Socio-economic 
Vulnerability 

- Secured succession County Statistische Ämter des Bundes und der Länder (2020b) 
- Poverty County Amt für Statistik Berlin Brandenburg (2019b) 
- Education County Statistische Ämter des Bundes und der Länder (2021) 
- Unemployment County Statistische Ämter des Bundes und der Länder (2022) 
- Social dependency County Eurostat (2021) 
- Agricultural population density County Eurostat (2021), 

Statistische Ämter des Bundes und der Länder (2010) 
- GDP per farmer County Eurostat (2022), 

Statistische Ämter des Bundes und der Länder (2010) 
- GDP per capita County Eurostat (2021, 2022) 
- Agricultural dependency for livelihood County Statistische Ämter des Bundes und der Länder (2020d) 
- Public participation (voting) County Amt für Statistik Berlin- Brandenburg (2019a) 
- Investments in DRR (less favoured areas) County MLUK (2022a) 

 

2.5 Statistical procedures and algorithms 

Exploratory analysis is conducted by calculating descriptive statistics, correlation matrices and by visual inspection of 

spatiotemporal patterns in the data. For the latter, we additionally provide a simple web app in R-Shiny. Changes over the 225 
investigated years are analysed by plotting the shift of statistical distributions and the temporal evolution of regional mean 

values. To investigate empirical relations between our hazard and vulnerability indicators and the to our impact indicators, we 

apply the statistical learning algorithm extreme gradient boosting (XGBoost) (Chen and Guestrin, 2016) combined with the 

model inspection technique Shapley additive explanations (SHAP) (Shapley, 1953; Lundberg and Lee, 2017). This 
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combination is widely used in the field of explainable artificial intelligence (XAI) and has recently been successfully applied 230 
in many different scientific studies to derive insights from complex non-linear and interacting datasets (Yang et al., 2021; Jena 

et al., 2023; Raihan et al., 2023; Li et al., 2024). XGBoost is an ensemble method based on boosting, i.e. consecutive models 

are trained on the residuals of the predecessor, thereby increasing the fit step-by-step (as opposed to bagging like in Random 

Forest, where an ensemble is trained in parallel fashion and aggregated via majority voting). We use a common tree-based 

model variant to allow for a hierarchical structure. As sampling scheme, we implemented a nested cross-validation, with an 235 
inner loop for hyperparameter optimization and an outer loop to assess the skill on independent holdout sets (not used in 

parametrization). SHAP values were computed for the best model of each nested iteration, selected by the highest R² score on 

the holdout set. The SHAP values represent a game-theoretic estimate of effect size, where the feature values are treated as 

players that can join a coalition game (model). The resulting values give the expected marginal contribution for each feature 

value across all possible coalitions, in the unit of the model target, and fulfill the efficiency property, meaning that they sum 240 
up to the difference between the overall expected value and the specific model prediction for a set of feature values. By 

computing these SHAP values for all samples used to construct a model, it is possible to visualize the effect each feature has 

within the inspected model. Note that this does not necessarily imply insights into processes in nature, but rather into empirical 

relations in the data as learned by the specific model. 

 245 
In total our dataset contains 437.476 agricultural fields across 18 counties. With 12 crop types and 10 years the theoretical 

maximum number of data points on county level is 2160, of which missing entries have to be removed (not all crops grown in 

all counties in all years). Predictive features on field level are the indicator values. Some feature engineering is necessary to 

convert the field-level data into features on county level. It is reasonable to assume that damaging processes are more dependent 

on extreme conditions than on the mean value over a large area. To retain as much information about the hazard distributions, 250 
we computed the relative affected area (non-)exceeding specified thresholds (in regular intervals of 0.5 for SPEI, 0.25 for 

LST/NDVI-anom., 0.05 for SMI, 5 for SMI-Total, and using the LBG class limits for AZL). A total of 68 features were created 

this way on county level. 

3 Results & Discussion 

3.1 Spatiotemporal patterns of hazard, vulnerability and impact indicators 255 

3.1.1 Temporal evolution on country level 

The temporal evolution of mean indicator values for entire Brandenburg suggests that the investigated decade can be divided 

into a pre-drought phase (2013-2017) and a drought phase (2018-2022) (Fig. 4). In 2013 and 2014 the SMI-Total is close to 0, 

observed vegetation health is at its maximum (i.e. negative LST/NDVI-anom.), essentially no impact-related statements are 
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captured in the newspaper text-mining data, and our economic calculation even estimates a plus of about 100 million euro 260 
compared to the expectations. Especially 2014 indeed made headlines with record-breaking (positive) yields (Agrarheute, 

2014). However, the crop model WOFOST still estimates a gap between potential production and water-limited production in 

that year, and also in the SPEI magnitude there is some drought signal visible. We interpret this as locally and temporally 

constrained meteorological effects that did not propagate to the soil and consequently did not have a negative effect on crop 

health and yields. The year 2017 was then rather wet, which is reflected in SPEI, LST/NDVI, and the media impact statements. 265 
However, the soil drought did only decline slightly according to the SMI. From 2018 a multi-year drought started. There seems 

to be a temporal lag of 1 year between meteorological and soil moisture drought indicators, likely reflecting the propagation 

from atmospheric conditions to the deeper soil layers. This is also visible in data for the year 2021, where SPEI-Magnitude 

indicates a good meteorological water balance, but soil moisture drought stayed. Interesting to note though is that the satellite 

observations of crop health peak in the same year as the SMI-Total, 2019, while the estimated economic loss (12 crops), as 270 
well as the crop model (for wheat) and newspaper reported impacts exhibit peaks at the meteorological drought maximum in 

2018. The distribution of LST/NDVI-Anomalies has been shifting towards higher values in recent years – not only the median, 

but also the upper tail of the distribution became heavier (Fig. 5). This upper part of the distribution is where we expect impacts 

like reduced yields. The most notable exposure changes over the decade are decreasing trends for rye (-30%), triticale (-22%), 

winter canola (-26%), sugar beet (-33%), and lupines (-38%), increase of winter wheat (+19%), winter barley (+28%), oat 275 
(+44%), peas (+132%), and sunflower (+145%) (Fig. 6). Changes in crop choice may partially reflect a response to experienced 

crop-damaging conditions, but are also driven by unconsidered factors such as fertilizer or market prices (e.g. Albers et al., 

2017). Our total loss estimate from the 12 crops for Brandenburg 2018 is 132 million euro, which comes close to the official 

numbers: 72 million euro of compensations have been issued by the state, and this sum was considered to account for about 

45% of actual claims (which would translate to a loss of 160 million euro when taken at face value) (MLUK 2019). 280 
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Figure 4. Evolution of indicator values over entire Brandenburg. Our loss estimate is given in the original values on the left axis. Bars 285 
indicate the number of agricultural impact statements in newspapers on the original scale (left axis). All other indicators were extracted on 
agricultural fields, area weighted, and scaled to fit the same axis. SPEI-Magnitude has only negative values and is thus scaled to [-1, 0]. 
SMI-Total and crop model-based gap (PP-WLP) have only positive values and are thus scaled to [0, 1]. LST/NDVI-Anom. has positive 
and negative values and is thus scaled to [-1, 1]. 
 290 
 

  
Figure 5. Shifting distribution of LST/NDVI anomalies by year.     Figure 6. Area covered by 12 selected crop types in Brandenburg 
 

 295 
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Our empirical yield gaps peak in the year 2018 for most crops in most regions, but the variability between counties is high for 

most crops (Fig. 7). Only winter wheat, winter canola, and winter barley exhibit low to moderate variability between counties. 

Sugar beet is only reported in a few cases. Plausibility checks against newspaper articles suggest that our relative gap estimates 

are in a reasonable range: yield reduction for individual crops from 25% to more than 50% have been reported in 2018 and 

2019, with winter canola performing worse in 2019 (Agrarheute, 2018; DLF 2019). Grain crops did better in 2022 than 2021, 300 
but maize much worse (Tagesschau, 2022). The year 2014 on the other hand is remembered for record-breaking yields with 

“+24% compared to the previous 5-year average and 11% higher than the previous year”, indicating that 2013 was still well 

above average (Agrarheute, 2014), which is captured in our estimates. 

 

 305 
Figure 7. Relative yield gaps per county in percent for the 12 investigated crops. 
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3.1.2 Spatiotemporal Patterns 

A more facetted picture appears when comparing the spatial distributions of hazard and impact indicators alongside each other 

for consecutive years (Fig. 8). Essentially the entire state of Brandenburg was affected by meteorological drought in 2018, 310 
with the SPEI-Magnitude minimum registered in the South-West. Soils in the South were already dry by then, but severe soil 

moisture drought throughout the country developed a year later. Contrarily, during the rather rainy year 2021 the accumulated 

soil drought persisted. When another intense meteorological drought struck in 2022, only the soils in the North had moderately 

recovered. Annual distributions of LST/NDVI-anom. exhibit small scale variability that is difficult to align with the aggregated 

hazard indicators. Patches of high anomalies (i.e. supposedly damaged fields) are found scattered across the country, while 315 
low anomalies (i.e. supposedly healthy crops) appear to dominate in the areas of good soil quality (cf. Fig. 2). The highest 

economic loss per hectare is mapped in the southern areas Spree-Neiße and Oberspreewald-Lausitz (the highest absolute loss 

in the Uckermark, due to the large fraction of agricultural land). While the exceptional years 2018 and 2019 also caused severe 

losses in the North and West of Brandenburg, the South-East ranks high in the relative loss estimates throughout all of the 

investigated years. Loss per hectare from our empirical approach is higher than the crop model estimates by Söder et al. (2022), 320 
who report separate numbers of around 90 euro per hectare from summer drought plus 60 euro per hectare from spring drought 

in 2018 in the region. Our estimates refer to the sum of all damaging processes. 

 

A number of socio-economic vulnerability indicators are particularly concerning in the North-Western areas Prignitz and 

Ostprignitz-Ruppin, as well as in the Southern county Oberspreewald-Lausitz: those regions rank above average on agricultural 325 
dependency for livelihood and below average on secured succession, while Prignitz has a particularly high agricultural 

population density on top. All three exhibit low scores for the coping capacity indicators education and participation in local 

politics. The socioeconomic vulnerability indicators and low resolution maps for all investigated years can be viewed at 

https://fabiobrill.shinyapps.io/agrdrought-explorer-brandenburg/, while the high resolution data can be obtained from the 

GitHub repository https://github.com/fabiobrill/brandenburg-drought-study. 330 
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Figure 8. Spatiotemporal patterns of aggregated meteorological and soil moisture drought hazard indicators, crop health anomalies, and 335 

county-scale loss estimates per hectare. 
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3.2 Empirical investigation of impact-relevant factors  

3.2.1 Relations between indicators on field level 

The spatiotemporal patterns suggest non-trivial and multi-way interactive relationships between our chosen hazard, 

vulnerability and impact indicators. This is further supported by a correlation analysis, which shows that the bivariate linear 340 
relations in the data are mostly weak (Fig. 9). Correlations slightly increase when subdividing the data by crop, presumably 

because the relationships are more linear for individual crops, however the effect is almost negligible (not shown). The 

meteorological and soil moisture hazard indicators SPEI and SMI are correlated among each other. Monthly SPEI and SMI 

are essentially uncorrelated to LST/NDVI-anom. in March, very weakly correlated in April, and moderately correlated in May 

and June. As the LST/NDVI measurements are also from May and June, the additional correlation in July has to be a spurious 345 
effect stemming from the collinearity in the SPEI layers (almost 0.5 between June and July). Raw NDVI – and therefore also 

LST/NDVI – is clearly related to AZL, meaning that crops grown on better soils tend to be “greener”, with or without drought. 

This effect is reduced in the anomalies. TWI and NFK exhibit no relation except to AZL. The modelled water-limited 

production from WOFOST only weakly relates to LST/NDVI (not shown). 

 350 

       
Figure 9. Pearson‘s correlation coefficient on field level data. Almost all correlations are statistically significant due to the high number of 

samples (n=437.245 complete observations, 474.966 in total). 
 
 355 
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An XGBoost model trained to predict LST/NDVI-anom. from monthly hazard indicators SPEI and SMI, aggregated SMI-

Total, environmental vulnerability factors AZL, TWI, and NFK, as well as crop type, obtains R² scores around 0.5 (Appendix 

B). AZL is chosen by the models as most important feature, followed by the categorical variable crop type, while the other 

environmental vulnerability factors, TWI and NFK, have little influence (Fig. 10). Each dot in these plots corresponds to a 

sample, and the SHAP values represent the feature effects (conditional expectation) on the predicted quantity, i.e. LST/NDVI-360 
anom. in this case. Interaction plots for crop types highlight that wheat, canola, and barely are grown on relatively good soils, 

lupines on bad soils, and rye on both (Fig. 11). While the absolute effect of AZL on the predictions is higher than the effect of 

crop type, particularly wheat is modelled to be impacted more likely than other crops despite growing on better soils (higher 

AZL). 

Some more process understanding about droughts might be distilled from the SHAP dependence plots (Fig. 12). A sharp 365 
increase of SHAP values is observed for AZL below 35. There is a strong interaction between AZL and SMI-Total, which on 

its own shows a weakly S-shaped relationship to the LST/NDVI anomaly. A more or less linear response is uncovered for SMI 

in May, with an offset at 0, i.e. good vegetation health for no drought in May. Meteorological drought in June seems to have 

a decisive effect in the model, judged by a sharp increase of SHAP values for SPEI < -1. SPEI in March appears to have a 

damaging effect under too wet conditions (SPEI > +1), which is in line with previous findings by Peichl et al. (2021). 370 
 

  
Figure 10. SHAP summary plot.                                  Figure 11. Interaction plot for crop type and AZL. 

   
 375 
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Figure 12. SHAP dependence plots for selected features: (a) AZL, (b) TWI (c) SMI Total, (d) SPEI March, (e) SMI May, (f) SPEI June. 

Centre line derived by a loess regression on the SHAP values. Colour visualizes interaction with a second feature. 
 
From a methodological point of view, it is worth to mention that SHAP plots based on the full dataset exhibit far larger variance 380 
on the y-axis than preliminary experiments with only 10% of the data. One reason for this might be the spatial resolution of 

the features, but we assume that it is also related to the complexity of the regression task. While there are some clear effects in 

the centre lines, it also becomes obvious that no single feature explains the full data. Several steps in our analysis include 

simplifications, e.g. calculations using mean values per field imply that an entire field is treated as a unit. For larger fields it 

might be realistic that only parts are affected, however such effects are below the credible resolution of input data. We 385 
acknowledge that particularly for maize, which is typically harvested from September on, a longer observation window might 

be better suited. Adjusting the remote sensing data to the actual sowing and harvest dates of each crop might improve the 

results – however, doing so would further complicate the data pre-processing and was considered out of scope of this study. 

Although agriculture in Brandenburg is predominantly rainfed, a future study could also benefit from spatially explicit 

information on irrigated areas (Ghazaryan et al. 2022). 390 
 

3.2.2 Relations between indicators on county level 

When arranging the 12 crops by correlation among the relative gaps (i.e. each sample referring to a county in a given year), it 

appears that almost all crops are positively correlated over time, while spatially (and thus spatiotemporally) several groups 

emerge (not shown). Correlation between the newspaper-based “agriculture” impact score by Sodoge et al. (2023) and our 395 
relative economic impact measure (in euro per hectare) over all 12 crops for the years 2013-2022 is 0.75 for entire Brandenburg 
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and 0.53 on county level. When compressing the data to mean values over the entire timespan to merge them with the socio-

economic vulnerability indicators, the highest correlation of newspapers reported impacts is to participation in local politics 

(0.69). From our data and analysis, we see no meaningful correlation between the vulnerability indicators to reported impacts 

or calculated losses. A major drawback is the resolution of the indicators. For these reasons they were not included in the 400 
following XGBoost regression analysis. 

 

The statistical learning models trained to predict the empirical yield gaps on county level obtain R² scores around 0.6 when 

using all features and all data (Fig. 13). Models using only LST/NDVI features as predictors perform poorly (R² ~ 0.2). It is 

quite remarkable that a field-level (i.e. high spatial resolution) observation of crop health does not provide more useful 405 
information for predicting yield. Models using hazard indicators as predictors perform better. Monthly values of SPEI are 

clearly to be preferred over seasonally aggregated magnitude, and the same is true for SMI. However, we observe that models 

using only SPEI perform slightly better than those using only SMI. One potential reason for this might be that the SMI is itself 

model-based, which introduces further uncertainty. We find a minor improvement when using both SPEI and SMI, where 

SMI-total is more relevant than the monthly top soil layers (as complementary information to SPEI). The additional 410 
improvement when adding LST/NDVI features on top is almost negligible. Our predictive features explain much more variance 

for the drought years 2018-2022 than for the pre-drought years 2013-2017, as expected. Models trained on the full dataset 

exhibit both higher skill and less variance. A similar effect is observed when training separate models for the different crop 

types: individual models for winter wheat perform better than individual models for rye, but a lumped model using all crops 

is much more stable. We explain this by the higher number of training samples in combination with a tree-based model structure 415 
that exploits similarities between crops. The R² skill score of the final model used for inspection via SHAP plots is 0.62 on the 

holdout set, i.e. about 60% of the variance in the empirical yield gaps can be explained by our drought-related features, while 

about 40% remain unexplained. Agricultural crops are highly managed and face numerous threats, not only droughts. It would 

be unreasonable to assume that drought indicators alone could fully explain real observed yield data. In a similar published 

attempt, Peichel et al. (2021) report that their best model for winter wheat obtained an R² of 0.68, which is very close to our 420 
best models – however, they do not report any details on the variability of this score. Empirical damage models, such as used 

for floods, typically report rather weak model fits (e.g. Wagenaar et al. 2017, Sieg et al. 2017). In the European Drought Risk 

Atlas, Rossi et al. (2023) do not even report model fit at all, but still uncover plausible impact-relevant factors for droughts. 
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Figure 13. Distributions of the R² skill score based on 10 repetitions for each setup. (a) Separate models for pre-drought and drought 425 
years. (b) Separate models for individual crop types. 
 
 

Model inspection identifies SPEI below -1 in June as the most relevant condition in the lumped model for all crops (Fig. 14) 

and also in crop-specific models for wheat and rye (Appendix C). Note that the features on county level always refer to the 430 
relative affected area above or below a threshold, e.g. the value of “SPEI June < -1” indicates the relative area per crop per 

county affected by SPEI in June below -1. However, a large fraction of the data indicates that non-exceeding -1 coincided with 

negative empirical yield gaps, i.e. higher than expected yields. To investigate this in more detail, we run another model setup 

using only data with positive empirical yield gap (n=827). Data on county level always includes mixed effects, i.e. the 

constraint “empirical yield gap > 0” on county level does not imply that there are no damaged fields in the data, but rather that 435 
damaged fields are outweighed by fields with higher than expected yields within the same county. Features based on SPEI in 

June are still among the most important predictors for such a subset, with thresholds of -0.5, and -1 ranked high (Fig. 14b). 

Even more severe meteorological drought conditions (SPEI < -2) are apparently just too rare in this dataset to be influential on 

county level. In March the threshold of 0 is again selected in reverse direction, i.e. indicating damage from too wet conditions 

(cf. Fig. 15d). Multiple AZL features are selected, confirming once more that soil quality is a relevant drought vulnerability 440 
factor (the regression target is already based on expected yield estimates that account for AZL, so this effect is on top). 

LST/NDVI as predictive feature for the empirical yield gaps is of low relevance when using all data, but ranks higher when 

restricting the training data to positive yield gaps. In the comparison of crops (Fig. 15a), lupines clearly stick out, which is 

explained by the high losses in the yield data (cf. Fig. 7). The interaction of crop type with AZL < 36 shows once more that 

rye is growing on worse soils than wheat, but still has lower SHAP values with respect to the regression on impacts. Triticale 445 
is on a similar level as wheat, canola even higher. From all these crops, rye is thus empirically found the most robust. 

 

To check the stability of the SHAP values, we repeated the model fitting several times and inspected the resulting summary 

plots. The first features are always crop type and SPEI in June. Beyond the first few ranks, feature effects get very similar and 

the exact ranks can shift in repeated model runs (depending on the random data subset and respective model parameters). The 450 
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effects for the different crop types and shapes of the dependence plots are also stable results, confirmed in multiple setups. 

Focussing the models on positive empirical yield gaps can make the feature effects more linear (Fig. 15b and 15c). Nonlinear 

responses in the dependence plots for single features on county level are likely empirical artefacts, as the definition of a feature 

as relative affected area should more or less linearize the physical response. Although spatial neighbourhood effects, like water 

lacking in a hydrologically connected area, could introduce nonlinearities, we assume in general that more affected area should 455 
lead to more impact, regardless of the criterion. 

  

 
Figure 14. SHAP summary plots for the best model trained on (a) all data, and (b) empirical yield gap > 0 

 460 

https://doi.org/10.5194/egusphere-2024-1149
Preprint. Discussion started: 23 April 2024
c© Author(s) 2024. CC BY 4.0 License.



22 
 

 
Figure 15. SHAP dependence plots for selected features on county level. (a) Effect of crop type and interaction with relative area of            
AZL < 36 from a model trained on all data (b) Effect of SPEI in June < -1 from a model trained on all data and (c) from a model trained only 
on positive empirical yield gaps. (d) Effect of SPEI in March < 0 from a model trained only on positive empirical yield gaps. (e) Effect of 
LST/NDVI anomaly > 0.5 from a model trained only on positive empirical yield gaps. 465 

4. Conclusion 

Our analysis of spatiotemporal patters of agricultural drought hazard, exposure, vulnerability, and impact indicators for 

Brandenburg, 2013-2022, empirically shows that the links between these components are complex and, consequently, risk 

mapping and monitoring need to be supported by thorough investigations from multiple datasets. We present agricultural 

impact indicators on two spatial levels – the crop health indicator LST/NDVI on individual fields, and empirical yield gaps on 470 
county level – and relate them. Anomalies of LST/NDVI are shifted to higher values during the drought years, but spatial 

patterns are rather scattered. The South-East ranks high in our per-hectare economic loss estimates throughout all of the 

investigated years, although in the exceptional years 2018 and 2019 high losses are also registered in the North and West of 

Brandenburg. It is not immediately obvious how the spatial patterns of the individual hazard and vulnerability indicators relate 

to both impact indicators. Statistical learning algorithms can be used to establish the missing link between the indicators. 475 
 

We apply XGBoost regression to model the impact indicators on both scales, and compare the SHAP values to derive impact-

relevant factors from the data. We find the importance of SPEI in June for regressing the observed impacts substantiated by 

multiple model setups: (1) On field level, regressing LST/NDVI-anom., the SHAP values of SPEI in June strongly increase 

below -1. (2) On county level, regressing empirical yield gaps, the relative area affected by SPEI < -1 is selected as most 480 
important predictive feature for a model trained on all data, as well as for crop-specific models (both wheat and rye). (3) Even 
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when removing all data where empirical yield gap < 0, i.e. more yield reported than expected, SPEI features from June still 

top the ranking, although several thresholds are selected (mainly -0.5 and -1). This is of particular concern as current regional 

climate simulations for Brandenburg project a shift in seasonality of rainfall: more in winter, and less during summer months. 

Too wet conditions in March are found to be an impact-relevant factor, in agreement with Peichl et al. (2021). SMI-Total adds 485 
complementary information to monthly SPEI. No real model improvement obtained when using both SPEI and SMI monthly 

values, though. From the considered vulnerability factors, AZL (i.e. agricultural soil quality) is by far the most relevant one. 

There is a clear influence of AZL on LST/NDIV-anom., with vulnerability rising at AZL below about 35. LST/NDVI is, 

somewhat surprisingly, not a good predictor for the empirical yield gaps in our study. We thus advise caution when interpreting 

empirical results from a single impact indicator. AZL is also related to selected crop types. Most notably, wheat is grown on 490 
high quality soils, while rye predominantly on low to medium quality soils. Rye is empirically found more robust under drought 

conditions in the region – based on both impact datasets. The cropped area of rye decreased by about 30% between 2013 and 

2022 in Brandenburg, though, and the area for winter wheat increased by 19% in the same time. Such choices of crop types 

simultaneously affect exposure and vulnerability, and thus risk. 

 495 
Data-driven techniques can capture complex interactions in human-environments such as agriculture. SHAP plots uncover 

which factors drive the prediction of impact indicators in the models. This does not necessarily relate to causal effects in nature, 

though. We thus suggest to cross-check results obtained from different model setups and different regression targets. Model 

inspection in this study shows that features are generally used in a physically meaningful direction, which is a prerequisite if 

data-driven models are to be trusted. No single feature explains the full data, though, and in fact such simplified interpretations 500 
are against the logic of using a strongly nonlinear ML algorithm to tackle complex regression problems. Rather than attempting 

to weight indicators manually, empirical impact data should be the benchmark to evaluate hazard and vulnerability indicators 

for the purpose of risk mapping. Further improvements in modelling observed impacts likely require more detailed spatially 

explicit data on vulnerability and management, e.g. irrigation. Monitoring and impact-based forecasting are needed to prepare 

for future hazards, which can hardly be mitigated. Stronger remote sensing indicators on drought impacts seem necessary in 505 
that context. To enable farmers and the general population to evaluate local adaptation options, i.e. changes in exposure and 

vulnerability, risk-related data needs to be made generally available – not only to policy-makers. Interactive visualization tools 

allow for exploring and foster a more open communication of risk-related geoinformation. 
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Appendix A 

Table A1. Average yields [dt/ha] per LBG 2010–2014, as used to estimate expected yields. Compiled from LELF (2016) 
Crop LBG-1 LBG-2 LBG-3 LBG-4 LBG-5 

Winter wheat 77 65 50 38 23 
Winter rye 63 55 43 35 25 
Summer rye 37* 33* 25.8* 21* 15* 
Winter barley 75 63 50 36 25 
Oat 55 45 35 27 18 
Winter triticale 66 60 48 37 23 
Summer triticale 39.6* 36* 28.8* 22.2* 13.8* 
Grain maize 90 80 70 60 50 
Peas 35 30 25 20 NA 
Lupines NA 25 21 18 15 
Potatoes 370 350 320 250 220 
Potatoes (starch) 450 420 390 320 250 
Sugar beet 650 620 580 NA NA 
Winter canola 43 38 32 25 20 
Summer canola 23 18 14 11 NA 
Sunflower 28 25 20 17 15 

*Assumption, based on 60% of winter variety. 
 
 805 
Table A2. Merging of the crop types between the three datasets IACS, yield reports, and average yields per LBG. Silage maize has been 
discarded later, and also for sugar beet we did not find prices 2021-2022 

Crop LBG average yields IACS data Yield reports Assumptions made 
Grain maize Grain maize Grain maize Grain maize - 
Sunflower Sunflower Sunflower Sunflower - 
Sugar beet Sugar beet Sugar beet Sugar beet - 
Lupines Lupines Lupines Lupines - 
Peas Peas Peas Peas - 
Winter barley Winter barley Winter barley Winter barley - 
Winter canola Winter canola Winter canola Winter canola - 
Oat Oat Winter oat, 

Summer oat 
Oat Merge IACS to “Oat” 

Potatoes Potatoes 
Potatoes (starch) 

Potatoes (various) 
Potatoes (starch) 

Potatoes combined 
 

Merge to “Potatoes” 

Winter wheat Winter wheat Winter wheat Winter wheat + spelt Neglect spelt 
Rye Winter rye Winter rye 

Summer rye 
Rye + winter mix Assume LBG values for 

summer rye as 60% of winter 
rye; Merge IACS to “Rye”; 
Neglect winter mix 

Triticale Winter triticale Winter triticale 
Summer triticale 

Triticale Assume LBG values for 
summer triticale as 60% of 
winter triticale;  
Merge IACS to “Triticale” 
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Appendix B 815 

 
Table B1. Model setups on field level (y = LST/NDVI-anom.). The indicators denoted with an ‘x’ are included in the respective setup. 
Performance initially assessed on 10% of the data to check the relative differences. 

Setup Crop type SPEI 
Magnitude 

SPEI 
Monthly 

SMI 
Magnitude 

SMI 
Monthly 

Total Soil 
Magnitude 

Vulnerability 
AZL, TWI, nFK 

R² (mean of  
10 repetitions) 

F1  x  x  x  0.09 
F2 x x  x  x x 0.17 
F3 x  x     0.20 
F4 x    x   0.15 
F5 x  x  x  x 0.26 
F6 x*  x  x  x 0.25 

0.48** 
F7 x*  x  x x x 0.25 

0.51** 
*as categorical feature rather than one-hot encoded, ** re-trained on the full dataset 
 820 
 
Table B2. Model setups on county level (target = relative empirical yield gap) using all available samples per setup (scores on holdout 
data). The indicators denoted with an ‘x’ are included in the respective setup. 

Setup Crop type LST/NDVI SPEI 
Magnitude 

SPEI 
Monthly 

SMI 
Magnitude 

SMI 
Monthly 

SMI  
Total 

Vulnerability 
AZL 

R² (mean of  
10 repetitions) 

LK1 x x       0.22 
LK2 x  x      0.41 
LK3 x  x  x  x x 0.52 
LK4 x   x    x 0.54 
LK5 x     x  x 0.48 
LK6 x   x  x  x 0.53 
LK7 x   x  x x x 0.56 
LK8 x x  x  x x x 0.57 
LK9 x* x  x  x x x 0.53 

LK9b x* x  x  x x x 0.40** 
*as categorical feature rather than one-hot encoded, **trained only on samples where empirical yield gap > 0 
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Appendix C 

  

 
Figure C1. SHAP summary plots for models trained only on (a) wheat (b) rye 
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Figure C2. SHAP values for all features of the best model trained on (a) all data, and (b) empirical yield gap > 0. 

Fig. 14 in the main paper only displays the first 15 of these. 
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